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dbs t  ruct. The meteoric field structure theory previoudly developed for nieteoris streams 
monoenergetic and monodirectional a t  infinityis applied to the problem of a meteoric strea 
incident upon an infinitesimal attractive center. Flux and density contours about the cent r 
are explicitly obtained for a particle speed at infinity of 2 km/sec as an example of a meth d3"/ 
rlere!npeA ?e pm+!e EEY zz:! r'czsit-; contriis :ai ail) speed. .in incident stream hive to ten 
earth diameters in width results in an order of magnitude enhancement of flux at points down- 
stream from the attractive center. The flux patterns for any energy can be derived from a 
universal flux plot in terms of a dimensionless parameter A = yr, where y = V,' /yM, and r 
is distance in earth (or center) radii. This universal flux plot is shown. 

Introduction. The broad objectives of this 
paper are the development of the detailed flux 
and density meteoric fields generated by an in- 
cident meteoric stream, which a t  infinity is 
monoenergetic and monodirectional, interacting 
with an attractive center of finite extent. The 
fields €or an infinitesimal attractive center are 
also obtained; these are simpler than for a finite 
center by virtue of the fact that no screened 
zoiieq ran appear. 

We feel that this is an important case for at- 
tractire centers in the solar system other than 
the sun, relative to vhich few meteors possess 
hyperbolic energies. For bodies of planetary size 
the situation is different; that is, in some local 
regions, they do provide the dominant gravita- 
tional field; relative to them, meteoric bodies 
do possess hyperbolic energies. Thus, in essence, 
me are assuming that a meteoric stream, whose 
trajectory is determined almost eh-ywhere by 
the solar field, in the near vicinity of a planet 
(e.g., the earth) can nevertheless be usefully 
approximated as a stream which relative to  the 
planet is monodirectiona1 and monoenergetic at 
infinity. 

I n  developing the hypothesis we are not as- 
serting that the capture of, and captured, me- 
teoric psrticles may not be an existent and 
important phenomenon; rather, we will dem- 
onst rate that monoenergetic, monodirectional 
streams a t  infmity constitute one mechanism for 
the realization of meteoric field patterns exhibit- 

ing large and abrupt variations in flux and den- 
sity. That such variations exist appears to be 
m-ell established; furthermore, they are required 
by several theories for the explanation of a 
wide range of phenomena. Direct counting of 
meteoric impact rates by means of satellite ex- 
periments reveals, within a few hundred kilo- 
meters of the earth, flux concentrations [Singer, 
1961, 1963; Bohn et al., 1950; Rushol, 1963; 
Dubin, 19%; Berg arid Jferedith,  1956; Gal- 
lagher and Eshleman: 19601 of dust that are 
Indicated, on the basis of some zodiacal light- 
eolar F corona data, to be orders of magnitude 
greater than those far from the earth. More- 
orer, observed impact rates vary rapidly within 
period. of hours [LaGow and Alexander, 1960; 
rlleraiider et al., 1961; Dubin, 1960; Dubin 
et al., 1964; Dubin and McCracken, 19623 but 
otherwise behave as might be expected from 
concentrated streams. 

Possibly of special interest, relative to the ap- 
plication of the theory to  be de\-eloped here, is 
the case of dust moving about the sun at  a 
distance of about 1 AU. The speed of these 
particles relative to the earth would be quite 
mal l  and, indeed, would be treated by our the- 
ory as possessing speeds relative to the earth, 
at infinity, of a few kilometers per second at  the 
most. Their observed relative velocities would 
be due principally to a conversion of gravita- 
tional geopotential energy. It is precisely t h a  
wry slow particles which give rise to  the most 
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fields about a finite earth. 
These, of course, are in addition to the small 
particles of approximately normal distribution 
in speed reported by Eshleman and Gallagher 
[1962]. Their existence and field patterns might 
be important in discussions of (1) the zodiacal 
light [James, 19631, (2) the concentration of 
fine Ni particles within noctilucent clouds where 
densities relative to space outside the cloud are 
greater by orders of magnitude [Soberman, 
1963: Witt et a l ,  19631, (3) the concentration 
of condensation nuclei for ordinary rain clouds, 
and (4) the variation of concentration of dust 
responsible for the radiance [Barber, 19631 of 
tnilight sky. This last phmomenon (4) appar- 
ently is infliienced by the position of the moon 
-an effect formcrlp tlioiight impossible through 
the influence of the lunar gravitational field, but 
which, now viewed in terms of the field patterns 
for very slow particles (predicted by the theory 
to follow), may be a significant factor. Further- 
more, it iq hoped that the results obtained in 
this stiidv can be profitably applied to the 
analysis of the data to be obtained from the 
NA4SA mcteoroid measnremcnt satellite, and 
eqpecially to the data from satellite meteorite 
ol~servations made farther from the rartli which 
will measlire the energy of thc impinging par- 
ticles. 

As in most phvsical theories, our devrlopment 
has some nnrealistic katurcs: we assume an in- 
finitely broad, infinitely persisting, monoener- 
getic-monodirectional mcteoric stream at infinity, 
incident upon a single attractive center, and de- 
rive the flux and density contours for various 
energies which would result in such a situation. 
The prob:ible importance of other forces for 
very fine particles (i.e., radiation pressure, 
Poynting-Robertson effect, and Coulomb drag) 
is also recognized; therefore, in situations where 
these are also prominent, our present develop- 
ment can be considered as preliminary. 

Fundamental to this development are the con- 
cepts of density, current, and flux. Here, den- 
sity is simply the number of particles per unit 
volume. The current a t  any point is a vector 
tangent to  the particle trajectory, passing 
through the given point, and pointing in the 
direction of particle motion ; the magnitude of 
the current vector is chosen equal to the num- 
ber of particles moving along the trajectory 

I 

during unit time. The magnitude of the current 
is the product of the density and particle speed 
a t  the point. In situations where a given point 
may be threaded by trajectories passing in two 
or more directions, the current concept loses its 
usefulness. In  such cases it may be generalized 
to the concept of flux which is defined to be the 
total path length generated or swept out per 
unit volume in unit time. Flux is a scalar quan- 
tity, obtained by adding the magnitudes of the 
various current vectors passing through the 
point; in cases where only one trajectory is pos- 
sible, flux obviously becomes the magnitude of 
the current. 

For the reader's convenience in understanding 
this paper, we prescnt a very brief discnssion of 
thc theory involved in forming the basic eqiia- 
tion. The derivation of this equation and a 
great deal of peripheral material is treated in 
detail by Shelton e t  al. [1964]. 

If the value of the flux at infinity between 
impact parameters a and a + da is givcn by 
J ( c o ) ,  the value for the flux between r and 
r + dr is given by 

- J (F)*dA  = J(?) d A  COSLY = 27ra da J ( m )  

Writing the clement of area d.1 in spherical 
coordinates as 

d A  = 2rr2 sin 8 dB 

we have, after rearrangement, 

which is the basic equation used here for the 
development of the flux and density fields. 

The impact parameter a is obtained from the 
well-known orbit equation [Goldstein, 19591 

Ya2 
= 1 + cos ( e  - e,) 

where 

y = V,'/yM 

y = gravitational constant. 
M = mass of center of force. 

The function cos a is obtained directly from 
the conservation of angular momentum equation 
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where a is the angle measured from the inward 
pointing radius vector to the directed trajectory 
defined to be positive in the counterclockwise 
sense. 

Method and d e  of presentation. Funda- 
mentally this paper is simply a detailed applica- 
tion of the meteoric field structure theory 
[Shelton et al., 19641 developed for monodirec- 
tional, monoenergetic streams at infinity, incident 
upon an attractive center. They have shown 
that, about an iifinitesimal attractive center, 
the flus field +(r, e) a t  any point specified in the 
plane by polar coordinates r and 0 with origin 
a t  the center is generally given by the addition 
of two currents. One current may be unscattered 
flus, the other scattered flus, or both currents 
may be scattered. The pertinent equations are 
sufficiently expressed in terms of an impact 
parameter a, the angle a between the radius 
vector and the tangent to one of the two trajec- 
tories threading every field point in the case of 
an infinitesimal attractive center, and y defined 

y = l’,2/yM (1) 

where y is the gravitational constant, M is the 
mass of the attractive center, and V ,  is the 
speed of the stream a t  infinity. If 4- is the flus 
at infinity, then 

da + 
4-  sin e cosa l  de 

- 44.t e) 01 - 

(2) 
a2 da- 

+ r2sin e cosa2 de 

where the a’s and a’s are asigned (Table 1) 
according to  whether the field point is in the 
upstream sector (sector 5)  [Hale and Wright, 
19641 where one current is unscattered and the 
other scattered, or in the downstream sector 
(sector 3)’ where both currents scatter in different 
directions. 

. 

In Table 1 

rysin e =t d r 2 y 2  sin’ e + 4yr(l - cos e) 
2Y 

a, = 

The sectors are numbered 5 and 3 to conform 
to the accompanying paper in which the discus- 
sion is extended to the case of the finite attractive 
center. 

TABLE 1. Compatible Set of a’s and a’s 

Sector a1 ai U P  a?. 

5. Unscattered and 
scattered flux a+ a+(a+) a- 4 U - l  

O d Y  a, a_(&) a- a - ( u - )  
3. Scattered flux 

1 % = J  [ r c o s e +  r2y  COS Bsin e+ 2rsin e 
dB 2 2ya, - ry  sin B 

(4) 

where the a’s are shown as functions of a’s, 
their associated impact parameters, the actual 
function being exhibited in ( 5 ) .  

The ultimate objective is to present flux and 
particle density data in the form of isoflus and 
isodensity contours about the attractive center. 
Certain general features of these plots require 
detailed esplanation. One of these is the Bkmax 
surface, referred to in the plane as the line. 
(This problem is axially symmetric throughout. 
The actual three dimensional field patterns can, 
in all cases, be generated by rotating the two- 
dimensional plots about on axis through the 
center and parallel to V,.) For the whole 
continuum of trajectories about the attractive 
center, this surface is simply the locus of points 
of perigee. Before crossing the Bkmax surface, a 
trajectory is unscattered; after crossing the 
surface, the trajectory is scattered (i.e., receding 
from the center). Both the contours and gradients 
of both flux and density are continuous upon 
crossing the 0,- surface; in the case of the 
finite scattering center, there are surfaces for 
which this is not true. Thus, for a stream, 
incident upon the earth with a particle speed 
2 5 km/sec, the associated 19~ - surface divides 
all space about the center into two sectors; Le., 
this surface is the boundary between sector 1 
and sector 2 [Hale and W r i g h t ,  19641. 

Flux contours were obtained by first holding 
0 constant in (2 )  and calculating Cp as a function 
of r for a given value of y (effectively, the energy). 
Performing this for various angles, a series of 
radial profiles was then plotted (a typical set of 
profiles is shon-n in Figure 1). Then, for a fised 
value of Cp, pairs of (r,  e) values can easily be 
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Fig. 1. Radial profiles of total particle flus for T', = 10' m/wc. 

read. The set of (r, 0) values for a given C$ value 
defines a flux contour. 

Once we have the isoflux contours, dcnsity 
contours can be found by dividing the flus 
values a t  the field by the stream specds; Le., 
4 is essentially the path length swept out in 
unit volume during unit time, or 

4 = c P,  v, ( 6) 
1 

where the summation is over the currents 
traversing the unit volume. Each current, by 
carrying a cylinder of unit base of height V ,  
and particle density p, through a unit volume 
during unit time, generates an amount of path 
length within the unit volume equal to p , V , .  

Lim sin 8= 
as 8 - r  

Since in our problem T', dcpends only on the 
location of the field point., 

4 = c P ,  i-, = 1' c P, 
or 

4 
l;(r) 

p(r)  = pi = -- 

where the total particle density has been defined 
as the sum of the densities arising from the 
various currents. 

Flux through unit area as 0 -+ A, r -+ m.  

It is obvious, upon inspection of ( 2 ) ,  that the 
flux approaches infinite values as 0 4 T. This, 
however, is a trivial singularity since, upon 

. 

Fig. 2. Geometry in vicinity of 0 = H. 
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integration of the total flux, threading any finite justifying the replacement of the integration by 
area containing the axis ( e  = K) is always simply multiplying the flux density by the 
finite at any finite point. projected area; the factor of 2 arises from the 

In Figure 2, t is a unit vector along one of the symmetry of particle trajectories near the axis 
trajectories threading the unit area d-4, repre- (Le., 4s  * qjs' as 0 --+ K, and barred quantities 
sented by the unit vector dA. We define f, to are averaged values over the surface element 
be the magnitude of the total current passing a). Using 
through dA and consider 

liin 

lim a + -  

sin 0 = sin (T - e) = sin E = E where i t  is to be understood that T exceeds by 
orders of magnit.ude the unit length, thereby we have 

. 

8 (degrees) 
Fig. 3. Universal flux plots relative to  unit monodirectional, monoenergetic incident flux 

at infinity about an infinitesimal attractive center in terms of parameter A E yr, B-here y = 
V.,l/vM, and r = distance in earth radii. 
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where the minus sign denotes diverging flus and 
cos a is finite and monotonically approaching 
unity as r + 03. Nest, consider 

1 = ldAl = Tr sin (T - 0) 'v m 2 e 2  

which yields 

2 2  
(10) 

e N I , / ( r G )  

Since t .dA = cos a, and substituting for 
t ,dA and e, we find 

for flus through unit area on the axis. 

infinity, one merely has to substitute in (2) 

a+ ---f r sin 0 

For any angle 0 # R, and r approaching 

to see that the contribution from scattered 
radiation (corresponding to a-) vanishes at 
infinity as i t  should, leaving 

r2 sin e cos B 
r2 sin e cos cy 

4, E l im - = t . d A  = COS 0 
r-m cpm 
B # *  

(12) 
which is exactly what we would espect, this 
being the result for an undisturbed flus incident 
upon a unit area whose normal is inclined at  
direction (n - e) with respect to the radiation 
stream. 

Universal flux plot for a monoenergetic-mono- 
directional stream incident on  an infinitesimal 
attractive center. Intuitively, one feels that  with 
the exccptior, of a scale factor the flux field 
pattern about an infinitesimal attractive center 
should be independent of energy. This will be 
shown to be true. At any point about a n  infini- 
tesimal attractive center, the total flus density 
consists of two of three possible components, 
the pertinent pair depending upon in  which of 
the two spherical sectors the point is located. 

Field points in the upstream sector have flus 
contribution from direct (unscattered) flus & 
and from flus scattered into the sector from the 
other hemisphere &' (scattered) ; field points in 
the downstream sector have flux contributions 
from flus scattered from the same hemisphere 
+s (scattered) and &' (scattered). Thus, in 
general, the total flus 

4 = C I+iI 
i = S  or D , S '  

The quantities ya, y(da/dO), and cos a upon 
explicit eshibition seem to be functions of 0 
and yr. When we define 

yr = X (14) 

it follows that 

TABLE 2.  Interpretations of Universal Plot 

y = constant r = constant 

Line 4 = constant 
stant stant in Figure in Figure 3 gen- 

erates y values 
which at the 

points ( r ,  e) 

total flux 4. 

If 4 = con- Line 4 = eon- 

3 generates a 
constant 4 sur- 
face (flux cnn- assocint,ed 
tour) in real 
space. would delivcr 

If e = con- Line e = con- Line e = constant 
stant stant in Figure in Figure 3 gen- 

3 directly erates associ- 
yields flux ated y and 4 
along radial values for point 
direction in specified by 
real space. 0 = constant, 

r = constant. 

If X and r = constant, Figurc 3 generates gnomonic 
plots, i.e., total flus on surfaces of 
spheres in real space. 

= constant (both r and y vary inversely), 
the an;!e a t  whiih perigee UCCUI'Y, 4, 
is specified by cos ek = -1/(1 + A). 
Cones with a common vertex a t  origin 
are generated in real space, on the 
surface of which trajectories, associ- 
ated with the y values determined 
from y = X/r and having impact 
parameters a = r[1 + (2/ry)l1'* 
[Shelton et al., 19641, attain perigee. 

, 

If r .  y 
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Equation 15, under certain restrictions, permits 
the construction of a universal flus plot so named 
because from it the field about any infinitesimal 
attractive center can be generated for any energy. 
The results of Shelton et al. [1964] show that 4s' 
contributes to the flus at every point and that, 
with the exception of sign-scattered flus being 
negative, one function describes both +D and Cps. 
Thus, we have attained a function of X and 0 
only, which represents the total flus at any 
point about an  infinitesimal attractive center. 
%-e should note, hoaerer, that this cannot be 
done for the net flus where the sign of the 
contribution is important. 

This function 4(h, 0) is displayed in Fi,me 3 
plotted against 8, with X being the parameter 
for a family of X = constant curves. For a given 
angle and specified y (the energy and attractive 
center strength) and distance, we can readily 
read off the total flux at that point relative to 

unit flus a t  infinity. illternatively, we may want 
to know for a given flus corresponding to s 
certain energy a t  what distance from the center 
along a given direction (a radial line) will the 
flus be the same for another energy or attractive 
center strength. This question led to the idea of 
a universal plot and is easily answered by 
considering 

or we might wish to know for a given distance 
from the center and for a specified energy (these 
together determine X) the minimum value of 8 

Figure 3 includes the following range for an  
earth mass attractive center (RE is the earth's 
radius) : 

0.005 I x I 100 

c,... -.L: - 1  
,>UC;U the :us exceeds a stated value. 

(1) for V, = 1 km 'sec, 

0.3RE 5 r 5 6250RE 

Flg. 4. Total particle flux contours about an infinrtesiinal attractive center relatire to unit 
monodirertionai, monoenergetic incident flus at infinity for Va = 2 x 10' m/sec. 
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which, of course, far exceeds the space within 
which the earth's field is effectively the only 
field, and (2 )  for V- = 80 km/sec, 

5 X lO-'RE 5 r 5 0.98RE 

which is within the earth. However, this defi- 
ciency a t  the higher energies is more apparent 
than real in that it is evident from Figure 3 
that at high energies or great distances (X > 100) 
the flus deviates but very slightly from its value 
of unity assumed at infinity. 

Figure 3 contains a great deal of information 
about the field. I ts  main uses can perhaps be 
best summarized as in Table 2 .  

Results and conclusions. Figurcs 4 and 5 show 
a sample set of results obtained by the applica- 
tion of the foregoing analysis to the case of 
V, = 2 km/sec. We recognize that such small 
relative speeds, if they are physically significant 
a t  all, will be so only fur the finest (high magni- 
tude) meteoric dust, and we therefore do not 

insist on their reality. The assumption that 
Ti, = 2 km/sec was made because these relatively 
low energy patterns most strongly display the 
enhancement effect we desired to establish. This 
effect also exists a t  higher energies; the higher 
energy field patterns have been obtained in the 
accompanying paper [Hale and Wm'ght, 19641 
where, appropriately, we consider a finite 
attractive center. 

Figure 4 shows the total particle flux contours 
about an infinitesimal attractive center resulting 
from a monoenergetic and monodirectional 
stream incident from the left. Total particle flux 
means that both scattered and unscattered fluxes 
have been summed to obtain the final result. 
Here, as in Figure 5,  all flus values have been 
normalized relative to a value of unity in the 
incident stream a t  infinity. The deshrd line in 
the plane of Figure 4 is the Okmay surface or, 
rather, the surface generated by the loci of 
points of perigee; flux and density contours, and 

* 
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EARTH RADII 

Fig. 5.  Total particle density contours about an infinitesimal attractive center relative to 
;L i)articlr density at infinity of 5 x IO-& m-" arriving from a unit monodirectional, monocner- 
getic flux at infinity for V .  = 2 x 10' m/sec. 
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their gradients as well, are continuous upon 
crossing this surface. It is apparent from Figure 4 
that, under the assumed conditions, gravitational 
focusing can cause localized enhancement of 
flus by orders of magnitude. This effect is far 
greater than previously expected, many authori- 
ties having felt that enhancement factors might 
possibly be as great as 2 or 3. Furthermore, we 
hasten to point out that such enhancement can 
occur quite close to the earth (earth radii are 
o h o m  in a scale on Figures 4 and 5)  and that an 
incident stream need be only 5 to 10 earth 
diameters in width to cause an order of magnitude 
enhancariiciit. 

Figure 5 shows total particle density contours 
about an infinitesimal attractive center for 
T', = 2 km/sec normalized to unit flux in the 
undisturbed stream. The enhancement in density 
is less than that for flux, an effect obviously due 
to the speeding up of particles as they near the 
center. As energy increases, the enhancement a t  
any given point of both flux and density de- 
cresses, and the flus and density enhancements 
tend toward unity. 

Figure 3 is the universal flus plot discussed 
in the foregoing section. Essentially, it is an 
exploitation of the fact that, regardless of the 
strength of an  infinitesimal attractive center or 
of the magnitude of V,, the flux field pattern is 
unaltered except for a change of scale in distance. 
The xwiable A, the product of T and y, is the 
basic parameter in this plot. Thus if, a t  a point 
distant r from the center in a direction of 150" 
relative to the radiant of the incident stream, 
the flux is 6 (corresponding to X = 0.8), it is 
immediately seen from Figure 3 that if the energy 
is divided by 4 (corresponding to X = 0.2) the 
new flux at this point will be 20 (all flux values 
assumed unity a t  infinity). 
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